1. What is summarization?
2. What can summaries look like?
3. Evaluation
4. Today’s focus: Single Document Summarization (text & multimodal)
Content

1. What is summarization?
2. What can summaries look like?
3. Evaluation
4. Today’s focus: Single Document Summarization (text & multimodal)

Disclaimer! The field is way too big to cover everything in one lecture, so we will just touch upon a selection of different work!
Content

1. What is summarization?
2. What can summaries look like?
3. Evaluation
4. Today’s focus: Single Document Summarization (text & multimodal)
What is summarization?
What is summarization?

Task: Find the important bits in all the data and return these
What is summarization?

Task: Find the important bits in all the data and return these
Why would you be interested in this?
Why would you be interested in this?

Academically
Can we learn a smaller representation that still captures our input?

Practical standpoint
Countless examples where amount of information available is too much to manually digest.
1. What is summarization?
2. What can summaries look like?
3. Evaluation
4. Today’s focus: Single Document Summarization (text & multimodal)
What can summaries look like?

Extractive summarization

Abstractive summarization
Extractive Summarization
Extractive Summarization
Extractive Summarization
Extractive Summarization
Extractive Summarization
Abstractive Summarization
Focus of this lecture

Single Document Summarization

- Text
- Multimodal
Content

1. What is summarization?
2. What can summaries look like?
3. Evaluation
4. Today’s focus: Single Document Summarization (text & multimodal)
Evaluation - what makes a summary ‘good’?
ROUGE

ROUGE: Recall-Oriented Understudy for Gisting Evaluation

ROUGE is a metric to evaluate textual summaries.
ROUGE

Predicted summary

ROUGE computes the quality of a summary, by comparing the number of overlapping n-grams in the predicted summary and the reference summary.

Reference summary

ROUGE is a metric to compute the quality of a textual summary, by comparing the number of overlapping n-grams in the predicted summary and the reference summary.
ROUGE

Predicted summary

ROUGE computes the quality of a summary, by comparing the number of overlapping n-grams in the predicted summary and the reference summary.

Reference summary

ROUGE is a metric to compute the quality of a textual summary, by comparing the number of overlapping n-grams in the predicted summary and the reference summary.
ROUGE

Predicted summary
ROUGE computes the quality of a summary, by comparing the number of overlapping n-grams in the predicted summary and the reference summary.

Unigrams: 22
Bigrams: 21

Reference summary
ROUGE is a metric to compute the quality of a textual summary, by comparing the number of overlapping n-grams in the predicted summary and the reference summary.

Unigrams: 27
Bigrams: 26
ROUGE

Predicted summary

ROUGE computes the quality of a summary, by comparing the number of overlapping n-grams in the predicted summary and the reference summary.

Overlapping Unigrams: 21
Overlapping Bigrams: 18

Reference summary

ROUGE is a metric to compute the quality of a textual summary, by comparing the number of overlapping n-grams in the predicted summary and the reference summary.
ROUGE

\[
ROUGE - N_{\text{Recall}} = \frac{\text{# overlapping } n\text{-grams}}{\text{# } n\text{-grams in reference summary}}
\]

\[
ROUGE - N_{\text{Precision}} = \frac{\text{# overlapping } n\text{-grams}}{\text{# } n\text{-grams in predicted summary}}
\]

\[
ROUGE - N_F = \frac{(1 + \beta^2) \times ROUGE - N_{\text{Recall}} \times ROUGE - N_{\text{Precision}}}{ROUGE - N_{\text{Recall}} + \beta^2 \times ROUGE - N_{\text{Precision}}}
\]
ROUGE

\[
ROUGE - 1_{\text{Recall}} = \frac{\text{# overlapping unigrams}}{\text{# unigrams in reference summary}} = \frac{21}{27} = 0.78
\]

\[
ROUGE - 1_{\text{Precision}} = \frac{\text{# overlapping unigrams}}{\text{# unigrams in predicted summary}} = \frac{21}{22} = 0.95
\]

\[
ROUGE - 1_F = \frac{(1 + \beta^2) \times ROUGE - 1_{\text{Recall}} \times ROUGE - 1_{\text{Precision}}}{ROUGE - 1_{\text{Recall}} + \beta^2 \times ROUGE - 1_{\text{Precision}}} = 2 \times \frac{0.78 \times 0.95}{0.78 + 0.95} = 0.86
\]

We use $\beta = 1$
ROUGE

$ROUGE - 1_{Recall} = \frac{\# \text{overlapping unigrams}}{\# \text{unigrams in reference summary}} = \frac{21}{27} = 0.78$

$ROUGE - 1_{Precision} = \frac{\# \text{overlapping unigrams}}{\# \text{unigrams in predicted summary}} = \frac{21}{22} = 0.95$

$ROUGE - 1_F = \frac{(1 + \beta^2) \times ROUGE - 1_{Recall} \times ROUGE - 1_{Precision}}{ROUGE - 1_{Recall} + \beta^2 \times ROUGE - 1_{Precision}} = 2 \times \frac{0.78 \times 0.95}{0.78 + 0.95} = 0.86$

We use $\beta = 1$

Same computation for Rouge-2, but use the bigram counts
ROUGE

ROUGE-L
Do the same, but for longest common subsequence.
(Use the union of LCS for multiple sentences.)

Multiple references
Use argmax of all ROUGE-N scores.
Correlation with Human Judgement

Okay?

People are not totally convinced and often perform a human evaluation as well.
Content

1. What is summarization?
2. What can summaries look like?
3. Evaluation
4. Today’s focus: Single Document Summarization (text & multimodal)
Single Document Summarization - Text

Extractive summarization

- Historical methods
- Binary labeling strategy
- Reinforcement learning approach
- ...

Abstractive summarization

- Encoder
- Attention
- Context vector
- Decoder
- x_1, x_2, x_3, x_T
- y_{t-1}, y_t
Single Document Summarization - Text

Extractive summarization

• Historical methods
• Binary labeling strategy
• Reinforcement learning approach
• ...

Disclaimer! The field is way too big to cover everything in one lecture, so we will just touch upon a selection of different work!

Abstractive summarization

Encoder

Attention

Context vector

Decoder

$y_{t-1} \quad y_t$

$x_1 \quad x_2 \quad x_3 \quad x_T$
Historical methods - **LexRank** as example

Make a graph from the document. Each sentence is a **node**.

Compute similarity between sentences. These scores are the **edges**.

Use PageRank to rank these sentences.

Select the highest ranking sentences as the summary.

Unsupervised!
Extractive Single Document Summarization - Text (2)

Binary labeling strategy

Classify each sentence as either ‘belongs to summary’ or as ‘does not belong to summary’.
Extractive Single Document Summarization - Text (3)

Reinforcement Learning Strategy
Each document is a context, combinations of sentences in the document are actions.

Learn a policy to perform the best action - get the best summary.

This method optimises directly for ROUGE!
Abstractive Single Document Summarization - Text (1)

Main idea / contributions

• Introduce encoder / decoder structure for summarisation.
• Add tags to the encoder.

Main idea / contributions

- Introduce encoder / decoder structure for summarisation.
- Add tags to the encoder.
- Introduce pointing probability, for unknown words.
Abstractive Single Document Summarization - Text (1)

Main idea / contributions

- Introduce encoder / decoder structure for summarisation.
- Add tags to the encoder.
- Introduce pointing probability, for unknown words.
- Introduce hierarchical attention mechanism.
Abstractive Single Document Summarization - Text (2)

Main idea / contributions

• Make use of pointer network, that can copy words from the input at any time - less unknown words.
• Introduce coverage mechanism that keeps track of previously paid attention.
Challenges

Questionable grammaticality.

Not very abstractive - Next method addresses this.
Main idea / contributions

• Use convolutions, to capture the hierarchical structure of the text.

• Add topic information, to force the summary into a certain direction.

• They introduce a new dataset!
Single Document Summarization - Multimodal
Multimodal Summarization with Multimodal Output

Figure 1: The illustration of our proposed task – Multimodal Summarization with Multimodal Output (MSMO). The image can help better understand the text in the red font.
Multimodal Summarization with Multimodal Output

Figure 2: The framework of our model.
Summary

- Automatic summarization has the goal to automatically find the important bits in all the data and return these.
Summary

• Automatic summarization has the goal to automatically find the important bits in all the data and return these.

• We can summarise different types of data. In this lecture we have focussed on text and we have briefly touched upon multimodal summarization.
Summary

• Automatic summarization has the goal to automatically find the important bits in all the data and return these.
• We can summarise different types of data. In this lecture we have focussed on text and we have briefly touched upon multimodal summarization.
• Summarization techniques can be divided into extractive methods and abstractive methods.
Summary

• Automatic summarization has the goal to automatically find the important bits in all the data and return these.
• We can summarise different types of data. In this lecture we have focussed on text and we have briefly touched upon multimodal summarization.
• Summarization techniques can be divided into extractive methods and abstractive methods.
• ROUGE and Human Evaluation are used to evaluate the produced summaries.
Questions?

Slides are available at maartjeth.github.io/#talks